In our group we combine cold molecular beams with state-of-the-art molecular control techniques, femtosecond laser pulses and velocity-map imaging of ions and electrons. A large part of our work is to develop novel approaches that enable us to explore dynamics in chemical systems in ever-greater detail, or to extend time-resolved methods to processes that we currently cannot study at ultrafast time-scales. This development of new methodologies is driven by scientific curiosity as well as technological advances.
Click on one of the images to read more:
Isomer Effects in ultrafast photochemistry
Dynamics of electron-driven processes
Novel methods for ultrafast photochemistry
Imaging chriality using photoelectron circular dichroism (PECD)
You can also check out some recent posters from the group in the gallery!
Isomer Effects in ultrafast photochemistry
We know that in nature small structural changes – the rotation around a single bond or the relocation of a hydrogen atom – can significantly alter chemical functionality. But actually studying the structure-function relationship on this level in the gas-phase is very challenging, as it is often impossible to separate these slight different molecular structures within a molecular beam. Yet this is exactly what we aim to do in this project by combining the electrostatic deflection technique with time-resolved photoelectron imaging. The electrostatic deflector allow us to select a single structural isomer (such as a conformer or tautomer) on the basis of its dipole moment. The isomer-selected molecular beam will then enter a velocity-map imaging setup, where we will perform ultrafast time-resolved photoelectron imaging experiments. This combination allows us to investigate how small structural changes, such as isomerism, influence the underlying photochemistry. For example, we can begin to address questions such as the influence of structural isomerism on UV photostability.
@article{abmaSinglecolorIsomerresolvedSpectroscopy2022,
title = {Single-Color Isomer-Resolved Spectroscopy},
author = {Grite L. Abma and Dries Kleuskens and Siwen Wang and Michiel Balster and Andre Roij and Niek Janssen and Daniel A. Horke},
url = {https://doi.org/10.1021/acs.jpca.2c02277},
doi = {10.1021/acs.jpca.2c02277},
year = {2022},
date = {2022-06-01},
urldate = {2022-06-01},
journal = {The Journal of Physical Chemistry A},
volume = {126},
pages = {3811\textendash3815},
abstract = {Structural isomers, such as conformers or tautomers, are
of significant importance across chemistry and biology, as they can have
different functionalities. In gas-phase experiments using molecular
beams, formation of many different isomers cannot be prevented, and
their presence significantly complicates the assignment of spectral lines.
Current isomer-resolved spectroscopic techniques heavily rely on
theoretical calculations or make use of elaborate double-resonance
schemes. We show here that isomer-resolved spectroscopy can also be
performed using a single tunable laser. In particular, we demonstrate
single-color isomer-resolved spectroscopy by utilizing electrostatic
deflection to spatially separate the isomers. We show that for 3-
aminophenol we can spatially separate the syn and anti conformers and
use these pure samples to perform high-resolution REMPI spectroscopy, making the assignment of transitions to a particular isomer trivial, without any additional a priori information. This approach allows one to add isomer specificity to any molecular-beam-based experiment.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Structural isomers, such as conformers or tautomers, are
of significant importance across chemistry and biology, as they can have
different functionalities. In gas-phase experiments using molecular
beams, formation of many different isomers cannot be prevented, and
their presence significantly complicates the assignment of spectral lines.
Current isomer-resolved spectroscopic techniques heavily rely on
theoretical calculations or make use of elaborate double-resonance
schemes. We show here that isomer-resolved spectroscopy can also be
performed using a single tunable laser. In particular, we demonstrate
single-color isomer-resolved spectroscopy by utilizing electrostatic
deflection to spatially separate the isomers. We show that for 3-
aminophenol we can spatially separate the syn and anti conformers and
use these pure samples to perform high-resolution REMPI spectroscopy, making the assignment of transitions to a particular isomer trivial, without any additional a priori information. This approach allows one to add isomer specificity to any molecular-beam-based experiment.
@article{Teschmit:Angew.Chem.Int.Ed.57:13775,
title = {Spatially Separating the Conformers of a Dipeptide},
author = {Nicole Teschmit and Daniel A. Horke and Jochen K\"{u}pper},
url = {https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201807646},
doi = {10.1002/anie.201807646},
year = {2018},
date = {2018-08-01},
journal = {Angew. Chem. Int. Ed.},
volume = {57},
pages = {13775--13779},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
@article{Horke:Phys.Rev.Lett.117:163002,
title = {Hydrogen Bonds in Excited State Proton Transfer},
author = {D A Horke and H M Watts and A D Smith and E Jager and E Springate and O Alexander and C Cacho and R T Chapman and R S Minns},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.117.163002},
doi = {10.1103/PhysRevLett.117.163002},
year = {2016},
date = {2016-10-01},
journal = {Phys. Rev. Lett.},
volume = {117},
number = {16},
pages = {163002},
abstract = {Hydrogen bonding may safeguard biomolecules against the damaging effects of UV light.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Studying the ultrafast dynamics of photon-driven processes (i.e. photochemistry!) is now a well established method. However, there is more to chemistry than photon-driven processes and reactions. In this new project we aim to ‘transfer’ many of the techniques we have developed to study photon-driven processes towards studying electron-driven processes (i.e. electrochemistry!). We aim to establish time-resolved electron-pump photon-probe spectroscopy to directly follow chemical processes initiated by electrons. In particular, we are interested in (dissociative) electron attachment reactions. These are at the heart of many biological damage processes, both detrimental (ionising radiation that destroys DNA) and beneficial (radiation therapy as a cancer treatment).
Novel methods for ultrafast photochemistry
At the heart of photochemistry is unravelling the competition between the different pathways a molecule can follow after excitation by a photon, such as dissociation or internal conversion. A powerful method to follow these processes and gain a complete understanding of the photochemistry is coincidence imaging, where we record both the produced photoion and photoelectron follow ionisation of a molecule. Furthermore, we record them ‘in coincidence’, such that we can precisely correlate which electron and ion belong together. Combined with femtosecond pump-probe spectroscopy this yields an extremely detailed view of how molecules deal with excess energy following excitation, and how this energy is redistributed through the molecule and on which timescales.
In collaboration with the group of Russell Minns (Southampton, UK) we are furthermore working on using VUV radiation produced through high-harmonic generation as a probe. The energy of a single VUV photon is typically sufficient to directly ionise any molecular species. This approach therefore allow us to really follow the dynamics of a chemical reaction – from reactants through intermediates to products – with femtosecond time resolution.
@article{caballoDisentanglingMultiphotonIonization2023,
title = {Disentangling Multiphoton Ionization and Dissociation Channels in Molecular Oxygen Using Photoelectron\textendashPhotoion Coincidence Imaging},
author = {Ana Caballo and Anders J. T. M. Huits and David H. Parker and Daniel A. Horke},
url = {https://pubs.acs.org/doi/10.1021/acs.jpca.2c06707},
doi = {10.1021/acs.jpca.2c06707},
issn = {1089-5639, 1520-5215},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {J. Phys. Chem. A},
volume = {127},
number = {1},
pages = {92--98},
abstract = {Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron- photoion coincidence spectrometer. The laser intensity is held at $\leqsim$1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e$'$3$Delta$u(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron- photoion coincidence spectrometer. The laser intensity is held at $łeqsim$1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e$'$3$Delta$u(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.
@article{Caballo:J.Phys.Chem.A125:9060,
title = {Femtosecond 2 + 1 Resonance-Enhanced Multiphoton Ionization Spectroscopy of the C-State in Molecular Oxygen},
author = {Ana Caballo and Anders J. T. M. Huits and Arno Vredenborg and Michiel Balster and David H. Parker and Daniel A. Horke},
url = {https://doi.org/10.1021/acs.jpca.1c05541},
doi = {10.1021/acs.jpca.1c05541},
issn = {1089-5639},
year = {2021},
date = {2021-10-01},
journal = {J. Phys. Chem. A},
volume = {125},
number = {41},
pages = {9060--9064},
publisher = {American Chemical Society},
abstract = {Coincidence electron-cation imaging is used to characterize the multiphoton ionization of O2 via the v = 4,5 levels of the 3s(3$Pi$g) Rydberg state. A tunable 100 fs laser beam operating in the 271\textendash 263 nm region is found to cause a nonresonant ionization across this wavelength range, with an additional resonant ionization channel only observed when tuned to the 3$Pi$g(v = 5) level. A distinct 3s textrightarrow p wave character is observed in the photoelectron angular distribution for the v = 5 channel when on resonance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coincidence electron-cation imaging is used to characterize the multiphoton ionization of O2 via the v = 4,5 levels of the 3s(3$Pi$g) Rydberg state. A tunable 100 fs laser beam operating in the 271– 263 nm region is found to cause a nonresonant ionization across this wavelength range, with an additional resonant ionization channel only observed when tuned to the 3$Pi$g(v = 5) level. A distinct 3s textrightarrow p wave character is observed in the photoelectron angular distribution for the v = 5 channel when on resonance.
@article{Warne:J.Chem.Phys.154:034302,
title = {Time Resolved Detection of the S(1D) Product of the UV Induced Dissociation of CS2},
author = {Emily M. Warne and Adam D. Smith and Daniel A. Horke and Emma Springate and Alfred J. H. Jones and Cephise Cacho and Richard T. Chapman and Russell S. Minns},
url = {http://aip.scitation.org/doi/10.1063/5.0035045},
doi = {10.1063/5.0035045},
issn = {0021-9606, 1089-7690},
year = {2021},
date = {2021-01-01},
urldate = {2021-06-21},
journal = {J. Chem. Phys.},
volume = {154},
number = {3},
pages = {034302},
abstract = {The products formed following the photodissociation of UV (200 nm) excited CS2 are monitored in a time resolved photoelectron spectroscopy experiment using femtosecond XUV (21.5 eV) photons. By spectrally resolving the electrons, we identify separate photoelectron bands related to the CS2 + h$nu$ textrightarrow S(1D) + CS and CS2 + h$nu$ textrightarrow S(3P) + CS dissociation channels, which show different appearance and rise times. The measurements show that there is no delay in the appearance of the S(1D) product contrary to the results of Horio et al. [J. Chem. Phys. 147, 013932 (2017)]. Analysis of the photoelectron yield associated with the atomic products allows us to obtain a S(3P)/S(1D) branching ratio and the rate constants associated with dissociation and intersystem crossing rather than the effective lifetime observed through the measurement of excited state populations alone.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The products formed following the photodissociation of UV (200 nm) excited CS2 are monitored in a time resolved photoelectron spectroscopy experiment using femtosecond XUV (21.5 eV) photons. By spectrally resolving the electrons, we identify separate photoelectron bands related to the CS2 + h$nu$ textrightarrow S(1D) + CS and CS2 + h$nu$ textrightarrow S(3P) + CS dissociation channels, which show different appearance and rise times. The measurements show that there is no delay in the appearance of the S(1D) product contrary to the results of Horio et al. [J. Chem. Phys. 147, 013932 (2017)]. Analysis of the photoelectron yield associated with the atomic products allows us to obtain a S(3P)/S(1D) branching ratio and the rate constants associated with dissociation and intersystem crossing rather than the effective lifetime observed through the measurement of excited state populations alone.
Imaging chirality using photoelectron circular dichroism (PECD)
As part of a large consortium of partners from both academia and industry we are working on developing photoelectron circular dichroism (PECD) spectroscopy as an analytical tool. PECD allows one to distinguish different enantiomers of chiral molecules in the gas-phase. It relies on imaging the photoelectrons produced following ionisation by circular-polarised light, and has been shown to reliably measure enantiomeric excess of species. Working closely together with the start-up MassSpecpecD, we are developing a compact PECD-spectrometer for analytical applications.
Our latest paper using coincidence double-VMI imaging to distinguish neutral and ionic multiphoton dissociation channels in molecular oxygen is out now in @JPhysChem A - well done Ana! https://doi.org/10.1021/acs.jpca.2c06707
Our latest paper comparing continuous and pulsed laser-based desorption (LIAD) methods is out now in Eur.Phys.J. D - well done Siwen! https://bit.ly/3cYM5tc
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here:
Cookie Policy
@article{caballoDisentanglingMultiphotonIonization2023,
title = {Disentangling Multiphoton Ionization and Dissociation Channels in Molecular Oxygen Using Photoelectron\textendashPhotoion Coincidence Imaging},
author = {Ana Caballo and Anders J. T. M. Huits and David H. Parker and Daniel A. Horke},
url = {https://pubs.acs.org/doi/10.1021/acs.jpca.2c06707},
doi = {10.1021/acs.jpca.2c06707},
issn = {1089-5639, 1520-5215},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {J. Phys. Chem. A},
volume = {127},
number = {1},
pages = {92--98},
abstract = {Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron- photoion coincidence spectrometer. The laser intensity is held at $\leqsim$1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e$'$3$Delta$u(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron- photoion coincidence spectrometer. The laser intensity is held at $łeqsim$1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e$'$3$Delta$u(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.
@article{wangComparingPulsedContinuous2022,
title = {Comparing Pulsed and Continuous Laser-Induced Acoustic Desorption (LIAD) as Sources for Intact Biomolecules},
author = {Siwen Wang and Grite L. Abma and Peter Kr\"{u}ger and Andre Roij and Michiel Balster and Niek Janssen and Daniel A. Horke},
url = {https://link.springer.com/10.1140/epjd/s10053-022-00459-7},
doi = {10.1140/epjd/s10053-022-00459-7},
issn = {1434-6060, 1434-6079},
year = {2022},
date = {2022-07-01},
urldate = {2022-07-25},
journal = {Eur. Phys. J. D},
volume = {76},
number = {7},
pages = {128},
abstract = {A major obstacle to the gas-phase study of larger (bio)molecular systems is the vaporisation step, that is, the introduction of intact sample molecules into the gas-phase. A promising approach is the use of laser-induced acoustic desorption (LIAD) sources, which have been demonstrated using both nanosecond pulsed and continuous desorption lasers. We directly compare here both approaches for the first time under otherwise identical conditions using adenine as a prototypical biological molecule, and study the produced molecular plumes using femtosecond multiphoton ionisation. We observe different desorption mechanisms at play for the two different desorption laser sources; however, we find no evidence in either case that the desorption process leads to fragmentation of the target molecule unless excessive desorption energy is applied. This makes LIAD a powerful approach for techniques that require high density and high purity samples in the gas-phase, such as ultrafast dynamics studies or diffraction experiments.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
A major obstacle to the gas-phase study of larger (bio)molecular systems is the vaporisation step, that is, the introduction of intact sample molecules into the gas-phase. A promising approach is the use of laser-induced acoustic desorption (LIAD) sources, which have been demonstrated using both nanosecond pulsed and continuous desorption lasers. We directly compare here both approaches for the first time under otherwise identical conditions using adenine as a prototypical biological molecule, and study the produced molecular plumes using femtosecond multiphoton ionisation. We observe different desorption mechanisms at play for the two different desorption laser sources; however, we find no evidence in either case that the desorption process leads to fragmentation of the target molecule unless excessive desorption energy is applied. This makes LIAD a powerful approach for techniques that require high density and high purity samples in the gas-phase, such as ultrafast dynamics studies or diffraction experiments.
@article{abmaSinglecolorIsomerresolvedSpectroscopy2022,
title = {Single-Color Isomer-Resolved Spectroscopy},
author = {Grite L. Abma and Dries Kleuskens and Siwen Wang and Michiel Balster and Andre Roij and Niek Janssen and Daniel A. Horke},
url = {https://doi.org/10.1021/acs.jpca.2c02277},
doi = {10.1021/acs.jpca.2c02277},
year = {2022},
date = {2022-06-01},
urldate = {2022-06-01},
journal = {The Journal of Physical Chemistry A},
volume = {126},
pages = {3811\textendash3815},
abstract = {Structural isomers, such as conformers or tautomers, are
of significant importance across chemistry and biology, as they can have
different functionalities. In gas-phase experiments using molecular
beams, formation of many different isomers cannot be prevented, and
their presence significantly complicates the assignment of spectral lines.
Current isomer-resolved spectroscopic techniques heavily rely on
theoretical calculations or make use of elaborate double-resonance
schemes. We show here that isomer-resolved spectroscopy can also be
performed using a single tunable laser. In particular, we demonstrate
single-color isomer-resolved spectroscopy by utilizing electrostatic
deflection to spatially separate the isomers. We show that for 3-
aminophenol we can spatially separate the syn and anti conformers and
use these pure samples to perform high-resolution REMPI spectroscopy, making the assignment of transitions to a particular isomer trivial, without any additional a priori information. This approach allows one to add isomer specificity to any molecular-beam-based experiment.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Structural isomers, such as conformers or tautomers, are
of significant importance across chemistry and biology, as they can have
different functionalities. In gas-phase experiments using molecular
beams, formation of many different isomers cannot be prevented, and
their presence significantly complicates the assignment of spectral lines.
Current isomer-resolved spectroscopic techniques heavily rely on
theoretical calculations or make use of elaborate double-resonance
schemes. We show here that isomer-resolved spectroscopy can also be
performed using a single tunable laser. In particular, we demonstrate
single-color isomer-resolved spectroscopy by utilizing electrostatic
deflection to spatially separate the isomers. We show that for 3-
aminophenol we can spatially separate the syn and anti conformers and
use these pure samples to perform high-resolution REMPI spectroscopy, making the assignment of transitions to a particular isomer trivial, without any additional a priori information. This approach allows one to add isomer specificity to any molecular-beam-based experiment.